
Island size distribution in stochastic simulations of the Saffman-Taylor instability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L195

(http://iopscience.iop.org/0305-4470/19/4/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 19 (1986) L195-L200. Printed in Great Britain 

LE’ITER TO THE EDITOR 

Island size distribution in stochastic simulations of the 
Saff man-Taylor instability 

J D Sherwood 
Etudes et Fabrication Dowell Schlumberger, BP 90, 42003 St-Etienne Cedex 1, France 

Received 14 November 1985 

Abstract. A stochastic numerical scheme is used to simulate radial motion of a fluid 
interface through a two-dimensional porous medium. The point at which the interface 
moves is chosen with a probability proportional to the local pressure gradient. The interface 
can intersect itself, enclosing islands of the original fluid. The number of islands of area 
s is found to scale approximately as s-OL, where a lies in the range 2.07*0.7. 

The interface between two fluids flowing in a porous medium is unstable when the 
more viscous fluid is displaced by a fluid of lower viscosity. Moreover, the unstable 
interface is continually excited by the randomly sized pores through which the fluid 
flows. This instability causes problems in oil reservoirs, into which water is injected 
to flush out the (more viscous) oil. It is therefore of commercial as well as scientific 
interest. 

We shall first briefly describe a model (King and Scher 1985, DeGregoria 1985, 
Sherwood and Nittmann 1986) which has been developed in an attempt to simulate 
the motion of the interface. Although the model is closely connected with Darcy’s 
law, its links with the physics of flow through individual pores of the rock are still 
unclear. However, here we shall be concerned with the model itself and, in particular, 
with the creation of islands of trapped fluid. If the advancing interface intersects itself, 
it completely surrounds an ‘island’, which is then preserved. Later we present results 
which suggest that the number of islands of area s scales as s-2,07*0.07. 

A continuum analysis of fluid flow in a porous medium is usually based on Darcy’s 
law 

U = - k V p / p  

where U is the fluid velocity, p the fluid viscosity, p the pressure and k the permeability 
of the medium. If the fluid is incompressible, then V 2 p  = 0. We assume that two fluids 
are present, and that, at each point, the rock either contains fluid 1 or fluid 2. The 
interface between the fluids is considered to lie halfway between adjacent grid points 
containing the two different fluids. At the interface, the pressure and the normal 
component of velocity are continuous. (Note that the absence of a jump in pressure 
implies that no attempt has been made to introduce interfacial tension between the 
fluids.) A classical numerical scheme would first solve for the pressure. V p  gives us 
the velocity everywhere and, in particular, the velocity of the interface. At each time 
step the interface would be advanced, along its entire length, by a distance proportional 
to the pressure gradient. In the discrete scheme presented here, the pressure field is 
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first obtained by a standard finite difference method. The interface is then advanced 
at a single point chosen with probability proportional to the pressure gradient. The 
expected advance, at each point, is therefore proportional to that given by the continuum 
analysis. A similar model has been presented by Niemeyer et a1 (1984) to model 
dielectric breakdown. Their interface was held at constant potential, and their results 
therefore correspond to injection of fluid with zero viscosity. 

We assume that the rock is initially saturated by fluid 1 ,  with viscosity pl, and that 
fluid 2 is injected at a single point. The injection point is therefore at the centre of a 
region of rock occupied by fluid 2. At each time step this region grows, as the interface 
advances, and fluid 2 displaces fluid 1 .  Whenever a zone containing fluid 1 is surrounded 
by fluid 2, this zone is frozen and no further motion of its perimeter is allowed. 
Physically, it might be more realistic to allow this island of fluid 1 to be dragged along 
with the motion of the surrounding fluid (see Payatakes (1982) for a review of the 
motion of individual oil ganglia). However, the numerical scheme does not (at present) 
permit fluid 2 to be displaced by fluid 1, and such motion is not allowed. 

The simulations were performed on a square grid, of size 361 x 361, though only 
points within a circle of radius 180 were considered. The central injection point was 
held at constant potential, as was the outer circle of grid points. At each time step, 
the pressure field p was first solved. The interface was then advanced, and fluid 2 
replaced fluid 1 at one grid point. The Laplace equation for the pressure was solved 
by Gauss-Seidel iteration, since a good estimate of the solution was available from 
the previous time step. Relaxation was first performed over a grid of size 9 x 9  
surrounding the point at which the interface had just moved. The entire grid was then 
relaxed, and it was this which took most of the computational time. At the high 
viscosity ratios ( p 1 / p 2  2 100) an additional intermediate grid of size 17 x 17 was also 
used. Simulations were stopped after 8000 time steps, or sooner, if fingers of injected 
fluid reached out halfway between the central point and the outer boundary. When 
the viscosity ratio was low, there was usually only one sweep of the entire grid at each 
time step. Even so, the simulations took 8-12 h on a VAX 11/785, of which all but 
approximately 25 min was taken up in Gauss-Seidel iteration. 

Figure 1 shows typical examples of the region occupied by fluid 2. When p l  < p2 
the interface is stable and few islands are formed. When p , > p 2  the interface is 
unstable and the growing fingers can surround much larger islands. We study the 
number of islands of area s (in grid block units) for a range of values of the viscosity 
ratio p 1 / p 2 .  Since the interface between the fluids lies halfway between grid points, 
the area of each island is numerically the same as the number of grid points within 
it. The results presented are in all cases an average over five simulations. We shall 
see that it is meaningful to speak of the number of islands n ( s )  created per 1000 time 
steps. For evaluation, we group the islands into size ranges 1,  2-3, 4-7, .  . . , and 
consider the sum 

In the stable case, p l  = 0.1p2, the largest islands obtained were of area s = 3. Figure 
2(a)  shows the mean values of m ( p )  after 1000,2000,. . . ,8000 time steps. The results 
for 2000-8000 steps indicate that a limit has been reached. 

When p,  = p2 the effect of the square computational grid is evident (figure l (b ) ) ,  
and there are no islands along the axes. The results for m( p ) ,  shown on figure 2( b) ,  
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Figure 1. The region invaded by fluid 2, at viscosity ratios p , / p 2 = ( a )  0.1, (b)  1.0, ( c )  
10’. ( d )  lo4. The number of time steps is (a) 8000, ( b )  8000, ( c )  6217, ( d )  3424. 

have not yet converged. At p1 = 2p2 this effect disappears, and m ( p )  again converges 
satisfactorily (figure 2 ( c ) ) .  

In figure 3 we plot log2( m( p)) for viscosity ratios p I / p 2  = 10, lo2, lo3, lo4, and for 
times up to 8000 steps, 4000 steps, 2000 steps and 2000 steps respectively-at high 
viscosity ratios the fingers approach the outer boundary more rapidly and the simulation 
therefore stops sooner. For small p, a limit is rapidly approached as the number of 
time steps increases. For higher p the convergence is slow since it is impossible to 
have large islands at early times in the simulation. In all cases the results seem to 
approach limits which, to the limited accuracy available, seem to be straight lines of 
slope -1 (-1.07 k0.07 by eye). If we seek a distribution 

n ( s ) a  s - ~  
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Figure 2. The number of islands m ( p )  in size range 
p ,  for viscosity ratios (a)  0.1, ( b )  1.0, (c) 2.0. Results 
are plotted after every lOOOn time steps, with the 
symbols J, n = 1; 0, n = 2 ;  A, n = 3; +, n =4;  X ,  2 6 

B o x  number n = 5 ;  0, n = 6 ;  4, n = l ;  %, n = 8 .  

then, replacing sums by integrals we obtain the approximate result 
2(p-l)(I-a) 

1 ) .  (21- - m ( p ) -  

Thus a straight line of slope -1  corresponds to a = 2, while a slope -1.07 corresponds 
to (Y = 2.07. Given the limited accuracy of the results, an attempt to express n ( s )  in 
a more complicated form does not seem worthwhile. For the same reason, we cannot 
compare a to the exponent ~ = 2 . 0 5 5  in the cluster-size distribution at the two- 
dimensional percolation threshold (Stauff er 1985). To improve the statistics, a larger 
number of islands would be required, particularly for the large island sizes. This could 
only be obtained by increasing the number of time steps (which would in turn require 
that the outer boundary be further away). 

We can consider some of the consequences of this distribution. Let the number of 
islands of area s and n time steps be p n ~ - ~ .  No islands are smaller than s = 1, and 
we assume that the largest island will be of area O(&). Then the total area of the 
islands is 

J;; 
np s - ' - f n p  log n. 

s = 1  

The density of fluid 2 in the entire agglomerate of (fluid 2 +islands of fluid 1 )  is therefore 

( 1  + & p  log n ) - l  
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Figure 3. log,(m(p)), where m(p) is the number of 

( b )  lo2, ( c )  lo3, ( d )  lo4, (e) CO. Results are plotted 
every lOOOn time steps, up to ( a )  n = 8, ( b )  n =4,  

0 2 L 6 (c)-(e) n =2.  For the symbols, see the legend to 

islands in size range p, for viscosity ratios ( a )  10, 

3 - 2 1  . I . , . , . I . , . , . , 
Box number figure 2. 

which decreases only slowly with n. If we assume an island size distribution P ~ S - " ~ ' ,  
the density again decreases slowly, as 

( 1 - -0.035)) - 1 

0.07 

Note, however, that this sort of argument neglects entirely the original fluid 1 which 
remains within the fiords between the fingers of fluid 2. 

If we subdivide all our grid lengths by a factor 2, we will increase n by a factor 
slightly less than 4 to cover the same physical area. The number of islands with areas 
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in the range [4s, 4s + 31 on the new fine scale will be approximately the same as the 
number of islands of area s on the old coarser scale. The main difference between 
simulations on the coarse and fine scales will be the appearance of small islands of 
area s = 1, 2 and 3 on the finer scale. 

Simulations at an infinite viscosity ratio should be equivalent to simulations of 
diffusion-limited aggregation (Witten and Sander 1981, Paterson 1984, Kadanoff 1985). 
However, DLA rarely forms closed loops, since the diffusing particles only have a small 
probability of travelling down the fiords between fingers. This is also true in the 
simulations presented here when the injected fluid is inviscid, and therefore at uniform 
pressure (figure 3(e)).  When the viscosity ratio is large, but finite, the simulations have 
the same general appearance as DLA (for the grid sizes considered here), but the number 
of closed loops is higher. In this case viscosity causes a pressure gradient along the 
length of each finger. The pressure gradient in the shorter slower fingers is lower, and 
there is a pressure difference between adjacent short and long fingers. Although the 
probability of the short finger growing towards the longer finger is small (at high 
viscosity ratios), islands can indeed be created when the number of time steps is large. 
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